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Received 8 December 1993 

Abstract A model for antiferromagnetic reentrant systems is developed. The underlying 
mechanism for the re-entrance is based on competing interactions between king and Polts 
variables. Renormalization-pup calculations are carried out using a modified Migdal-Kadanoff 
approximation. The resulting global phase diagram is presented and i m p o m t  f a m e s  are 
discussed. The model is then applied to liquid crystals, producing qualitative agreement with 
the behaviour of certain re-entrant liquid crystal systems. 

1. Introduction 

A phenomenon of considerable interest in statistical mechanics is reentrance. In a re-entrant 
system, the usual progression of phases with temperature is reversed, so that a lowering 
of temperature results in  the reappearance of a high-temperature 'disordered' phase. The 
study of reentrance has a long history, but perhaps the classic example is the re-entrance 
observed in certain binary liquid mixtures (McEwan 1923, Barker and Fock 1953, Anderson 
and Wheeler 1978, Walker and Vause 1983). Jn these systems, the liquid mixture is miscible 
at high temperature, becomes immiscible as the temperature is lowered, and then reenters 
the miscible phase as the temperature is lowered further. Not only is the order of phases 
novel in such a system, it also appears that the entropy has increased as temperature is 
lowered-which, in turn, implies thermodynamic instability. Clearly, more is going on 
than meets the eye. In particular, statistical mechanics is presented with the challenge of 
answering the following questions: What microscopic interactions are responsible for the 
re-entrance, and how can the entropy of a system continue to decrease even as it re-enters 
a-seemingly-less ordered phase? (Goldstein and Walker 1983). 

These questions can be addressed most readily with a specific model describing the 
interactions between various degrees of freedom. For example, a model of interacting 
king and Potts variables, introduced by Walker and Vause (wv) (Walker and Vause 1983), 
describes reentrance in binary liquid mixtures. In this model, the king variables (Ising 
1925) represent the two components of the mixture, whereas the Potts (Potts 1952) variables 
describe the relative orientations of the molecules-if the relative orientation is correct the 
molecules hydrogen bond, otherwise no bond is formed. The mechanism for re-entrance, 
in this case, is that the favourable energy of hydrogen bonding produces a low-temperature 
miscible phase, while, at the same time, the low orientational entropy associated with 
the hydrogen bond more than offsets the increase in entropy due to the system becoming 
miscible again. 

In this paper, we study a new type of re-entrant phase transition to be found in 
the wv model. All previous studies of the model have dealt with reentrance in the 
ferromagnetic king transition (i.e. miscible to immiscible), which occur in a particular 
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subspace of the global model. We show that the full WV model displays not only this well 
studied ferromagnetic re-entrance, but a complementary, and unstudied, antiferromagnetic 
re-entrance as well. Though the antiferromagnetic transition has no particular relevance to 
liquid mixtures, it may apply to other physical systems. For example, certain liquid crystals 
show the following doubly re-entrant sequence of phases with decreasing temperature; 
nematic, smectic A (bilayer), nematic, smectic AI (monolayer) (Cladis 1975, Cladis et 
a1 1978). In these systems, the smectic A phase is characterized by molecules that are 
anti-aligned; hence, the antiferromagnetic Ising transition may provide at least a qualitative 
understanding of the re-entrance mechanism. 

Other models have been quite successful in describing such systems (Berker and Walker 
1981, Indekeu et a1 1987). These models are based on a different mechanism from the one 
studied here-a mechanism in which frustration is the cause of re-entrance. One of the 
interesting aspects of the re-entrance we present is the complete absence of frustration in 
our model. 

In what follows, then, we describe the general wv model in section 2, with special 
attention given to the subspace that contains the antiferromagnetic re-entrance. For ease 
of reference to previous work, we use the original notation wherever possible. Section 3 
describes a Migdal-Kadanoff (MK) (Migdal 1975, Kadanoff 1976) renormalization-group 
calculation, which extends and generalizes the original work on the model. We present 
global phase diagrams in section 4, and conclude with a brief discussion of the qualitative 
connection between the model and liquid crystals in section 5. 

S'M Woad and J S Walker 

2. Model 

The wv model describes the interactions between Ising variables (si = il, denoting two 
types of molecules, A or B) and Potts variables (ui = 1,2,3,. . . , q, representing molecular 
orientations) appropriate to a hydrogen-bonding liquid mixture. It is given by 

'4 = Erif, (1 - S,,)S,, + K2(1 - ,5s,s;)(I - &c;) + K3&j.7;Sc<c; + K48.rj.,, (1 - &,c;)I (1) 
(id 

where H is the reduced Hamiltonian -H/kaT ,  with H the lattice Hamiltonian, kB the 
Boltzmann constant, T the absolute temperature, and K, (n = I, 2, 3, 4) the reduced 
coupling constants described below. In what follows, K4 0 is chosen as a reference 
level. Previous renormalization-group studies of this model (Walker and Vause 1983) have 
involved only the subspace where K3 = 0, yielding re-entrance in the ferromagnetic phase. 
Here we focus on a previously unmapped region where K3 # 0 and KI = K2 = K ,  which 
again yields re-entrance, this time in the antiferromagnetic phase. In this subspace, equation 
(1) becomes 

Since only K3 is associated with Pons variables, we refer to K3 as the Potts interaction. 
Similarly, K will be referred to as the king interaction. The resulting reduced energy level 
diagram is shown in figure 1 (note that positive values correspond to favoured interactions). 
The K3, K, and zero levels have degeneracies of 2q, 2q2, and 2q(q - l), respectively, and 
correspond to interactions in which nearest neighbours are like molecules with equal Potts 
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Degrneracy Configuratio~ R e d u d  Energy 

[AA. BE. CO, = 091 

tAB.BA.(aiit~.ai=a~l 
zs K3 

2q2 K = K l = K *  

[AA. BB. (ai # aj)l 
Wq-1)  q= 0 

Figure 1. Reduced energy level diagram for Kt = K2. The sign and magnitude of the 
interactions is appropriate for reentrance. Note that the interaction that is energetically most 
favourable (i.e. most positive) is also the interaction with the lowest associated entropy. 

variables, unlike molecules with any Potts variables, and like molecules with unequal Potts 
variables, respectively. 

Several special cases will now be explored (refer to figure 1): 

(i) Ising model: (K3 = K4 = 0). For this case like molecules have the same energy for 
all U ,  i.e. the Potts variables have been decoupled. The reduced Hamiltonian is 

(3) 

which is a standard Ising model except that the two energy levels, K and zero, have 
degeneracies of 2q2 rather than 2. The extra overall degeneracy of q2 simply adds a constant 
to the free energy and so does not alter the critical properties of the system. Therefore, two 
symmetrically located critical points are expected at K = fK,. Since for K > 0 unlike- 
nearest-neighbour occupation is the most energetically favourable configuration, fK, is an 
antiferromagnetic critical point. Similarly for K c 0 like-nearest-neighbour occupation is 
the most favourable configuration, therefore -Kc is a ferromagnetic critical point. When 
lKl c lKcl the system is in the high-temperature disordered phase. 

(ii) Zq-state Potts model: (K = K4 = 0). Again there are two energy levels; one level 
is K3 with a degeneracy of 2q and the other is zero with a degeneracy of Zq(2q - 1). The 
reduced Hamiltonian is 

with ti = 1,2 ,3 ,  . . . , 2 q .  This is a 2q-state Potts model, therefore only a ferromagnetic 
critical point at some K3 > 0 is expected for q z 1 since the antiferromagnetic Potts model 
yields no phase transition. 

(iii) q-state Potts model: (K -+ -CO). If K + -CO, then the K3 and K4 levels 
predominate in the system and the K level can be ignored. Now there are two energies 
with degeneracies of 2q and 2q(q- 1); a q-state Potts mode1 with an extra overall degeneracy 
of 2. Note that letting K + -m means that si = sj for all nearest neighbours, hence the 
reduced Hamiltonian becomes 

( i d  

Again, only a ferromagnetic critical point is expected at some K3 > 0. 
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In this model, re-entrance occurs due to the dynamic modification of king interactions 
by Potts variables. The system minimizes its free energy F E - T S  at high temperature by 
being in the state of greatest entropy, the disordered phase, and at low temperature by being 
in the most energetically favoured state, the ferromagnetic phase described by K3 where 
nearest neighbours have equal Pot& variables. At intermediate temperatures, however, K3 
has little effect on the system due to its low degeneracy, hence low associated entropy, 
therefore the ferromagnetic phase is disfavoured. Despite the fact that the antiferromagnetic 
phase described by K is less energetically favourable, its ,water entropy allows the free 
energy to be minimized as the temperature is decreased from the high-temperature legion. 
(Note that if K3 is ignored, K describes only this antiferromagnetic transition.) At still 
lower temperature, before reaching the ferromagnetic transition, the competing Ising and 
Potts interactions effectively cancel each other out. resulting in the system's re-entrance into 
the disordered phase. 

3. Renormalization-group calculations 

The steps for performing the renormalization-group calculations for this model are the same 
as described in the wv paper (Walker and Vause 1983); that is, we cany out a Migdal- 
Kadanoff (Migdal 1975, Kadanoff 1976) approximation consisting of an approximate bond- 
shifting step followed by an exact step which sums out a fraction of the degrees of freedom 
from the restructured lattice. After bond shifting, the interaction between nearest-neighbour 
sites i and j is given by 

I?($, , sj ,ut., ~ j )  = bd-'H(sj, s j ,  Ut, ~ j )  (6) 

where b is the length-rescaling factor and d is the dimensionality of the lattice. In order to 
make direct comparisons with the wv calculations, we adopt their assignment of d- 1 = 1.2 
for the exponent of b. This choice ensures that the MK approximation is in optimum 
agreement with known results for the three-dimensional Ising model. 

Next, we perform an exact decimation on the lattice. We use b = 3, which allows 
antiferromagnetic and ferromagnetic occupations to be treated on an equal footing. The 
resulting recursion relations are as follows: 

where KA contributes to the free energy. The partial partition functions 20 (si = sj ;  ui # uj), 

2 (si # s j ;  uj, uj arbitrary), and Z3 (si = sj ;  ui = uj) are given by 

2 zo = q -3q f 3  + 3q(q - 1 ) 2 +  3qzx2+3(q - 2)z +3z2 

Z = 3(q - 1 ) ' ~  + 6(q - 1 ) ~  + 3z2x + q2x3 

Z3 = (4 - I)(q - 2) + 3q(q - 1)x2 + 3qZX2 + 3(q - 1)Z + Z3 (8) 

with x = exp(bl.zK) and z = ex~(b'.~K3). 
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We now discuss several invariant subspaces of our renormalization-group transformation 
and point out the connections to the special cases of the model discussed in section 2. First, 
if K3 = 0, then the resulting partial partition functions (8) are 

zo = z3 = qq1+ 3x2)  

z = qZ(3x + 2 ) .  

As a result, we see from equation (7c) that K; = 0, hence K ,  = 0 is an invariant subspace. 
Furthermore, K3 = 0 is the Ising subspace, and, as expected, the recursion relation (7b) 
for K‘ is independent of q since both Z and Z3 are proportional to q2. If instead we let 
K = 0, we find 

Zo = Z 

Z3 

(%)’ - 3(2q) + 3 + 3(2q - 2 ) ~  + 32’ 

(24)’ - 3(2q) + 2 + 3(2q - l ) ~  + z3 .  (10) 

Clearly, K‘ = 0 for this case, hence K = 0 is an invariant subspace. Referring to special 
case (ii) in section 2, we note that this subspace corresponds to the 2q-state Potts model. 
Similarly, if we let K + --oo then 

zo = 42  - 3 q  + 3 + 3(q - 212 + 3z2 

z3 = 4’ -  3q  +2+3(q - 1 1 z + ~ 3  

Z 4 0  

resulting in K’ + -CO, hence K + --oo is also an invariant subspace. From special case 
(iii) in section 2, this limit is the q-state Potts model. Note that the recursion relation for 
K$ is the same for the last two cases, except that q occurs in place of 2q in the K + -CO 

limit, thus showing that the renormalization-group transformation faithfully reproduces the 
q- and 2q-state Potts limits of the original model. 

4. Global phase diagram 

In this section we explore the global phase dia,%m of our model in ( K ,  K3) space. Since 
this space is invariant (as is easily verified), all of our results can be displayed conveniently 
in two-dimensional figures. The phase diagram is obtained by successive iteration of 
the recursion relations given in the previous section. Any initial point, ( K ,  K3). will 
be transformed to a new point (K‘, K;)  by the MK transformation, and similarly, each 
additional iteration maps the current point to another renormalized point. In this sense, a 
renormalization-group ‘flow’ is created. Each point in ( K ,  K3) space flows to a fixed point- 
that is, a point where further iterations no longer have an effect-and each fixed point can 
be interpreted as corresponding to a critical point or a given phase of the system. In this 
way the phase diagram is mapped out into various two-dimensional regions, corresponding 
to phases, separated by lines of phase transitions, as shown in figure 2. We begin our study 
by considering the five fixed points displayed in figure 2. 

Perhaps the most trivial fixed point is HT, which is located at the origin. That HT is a 
fixed point is readily verified by noting that if K = K3 = 0, then all the partition functions 
reduce to 4q2. As a result, it is clear from the recursion relations that K’ = K; = 0. HT 
is found to be irrelevant in both the K and the K3 directions, which simply means that it 
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K3 

2 . 5 1  48' .' 

Figure 2. Phase diagram in (K. K,) space. The diagram shows the following five fixed 
points: €IT, high-temperahre sink; AF, antiferromagnetic Ising hansition: F, ferromagnetic 
Ising m i t i o n ;  F. ferromagnetic 2q-Potts transition; and Q, multicritical point. In addition. four 
phases are indicated in thediagram: 11, antiferromagnetic Ising; 111, disordered; IV, ferromagnetic 
Ising; and V, ferromagnelic 2q-Potts. 

attracts flows from a two-dimensional region, labelled III in figure 2. The physical meaning 
of HT becomes clear when one recalls that the reduced couplings, K and K3, are of the form 
(energy)/ksT. Thus, if the energies in the system are finite, it follows that K = K3 = 0 
corresponds to an infinitely high temperature (HT). Thus, we see that HT is a fixed point 
corresponding to the disordered phase of the system, and hence, every point in region III 
represents a disordered state of the system. 

Next, we find two mirror-image fixed points in the king subspace, K3 = 0. These 
fixed points, labelled F and AF, are relevant in the K direction and irrelevant in the K3 
direction, meaning that they have one-dimensional domains of attraction extending in the 
K3 direction. These domains of attraction are indicated by the lines extending from the 
points F and AF in figure 2. Since these lines separate regions of difference phases, F 
and AF are fixed points representing phase transitions. In particular, F and AF control the 
ferromagnetic and anitferromagnetic Ising transitions, respectively. 

A similar fixed point occurs in the %-state Potts subspace, K = 0. In this case we find a 
fixed point at P which is relevant in the K3 direction and irrelevant in the K direction. As a 
result, P has a one-dimensional domain of attraction extending in the K direction, as shown 
in figure 2. Physically, P represents the ferromagnetic %-state Potts transition. Since the 
Potts model with many states has no antiferromagnetic transition, there is no mirror-image 
point to P; in fact. no fixed points occur on the negative K3 axis. 

The fifth fixed point in figure 2 is the point labelled Q. The first notable feature of this 
fixed point is that it does not occur on one of the invariant subspaces of the model. Instead, 
it simply occurs where two phase transitions happen to merge. In addition, Q is relevant 
in both directions, hence its domain of attraction is restricted to the point itself. Since Q 
represents the merger of two different phase transitions, we identify it as a multicritical 
point. Finally, we note that the fixed points P and Q are the K3 # 0 versions of P and Q 
in the original wv model. 

Finally, a sixth fixed point should be mentioned, though it does not appear in figure 2. 
This fixed point governs the line extending to the left of Q, and is located at K + -m. 
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We find this fixed point to be relevant in the K3 direction, and to represent a ferromagnetic 
q-state Potts transition. 

In addition to the fixed points, we note that figure 2 shows three types of phase 
transitions, distinguished by which variables take on long-range order as the transition is 
crossed. The transitions can be classified as follows: Ising variables order, Potts variables 
unaffect4 Potts variables order, Ising variables unaffected; king and Potts variables order 
simultaneously. For example, the line extending from the fixed point AF is the locus of 
points where Ising variables assume long-range antiferromagnetic order, while the Potts 
variables remain disordered. The line passing through the point F is similar, except in this 
case the long-range order is ferromagnetic Ising. 

Potts variables are involved in the remaining two transitions. For example, the line 
extending to the left of Q is a q-state Potts transition; below this line the Potts variables are 
disordered. above they have long-range ferromagnetic order. Crossing the line extending 
to the right of Q, and passing through P, causes all 2q variables to order simultaneously. 
Notice that a thin sliver of disordered phase always exists between the AF and Q-P transition 
lines. 

The existence of antiferromagnetic re-entrance is indicated by the dashed line extending 
from the origin in figure 2. This line represents a locus of initial conditions for a piuticular 
system, with temperature decreasing with increasing distance from the origin. To see this, 
recall that all the reduced couplings are of the form (energy)/ksT, as mentioned above. 
The energy referred to here is an energy of interaction between neighbouring molecules, 
which one expects to be temperature independent. Therefore, the ratio K 3 / K ,  for example, 
is a temperatureindependent ratio of energies characteristic of the system being studied. 
The constancy of &/K is inherent in the dashed straight line; the fact that the dashed line 
intersects the AF line twice means the system displays two critical points as a function of 
temperature. 

In particular, at high temperature the system is disordered. As it is cooled, an Ising 
critical point is encountered at U (denoting an upper critical point). For a range of 
temperatures below U the system maintains antiferromagnetic king order, but as temperature 
is lowered further to L, a second (lower) king critical point occurs. Immediately below 
this temperature the system is disordered again. At even lower temperatures a third phase 
transition is observed, this time causing the ordering of all 2q variables. 

The disordered phase below the point L deserves special attention. Though the system 
is disordered there, it is substantially more complex than in the region near the origin. 
To see this, recall that the king and Potts interactions compete: Ising interactions favour 
antiferromagnetic alignment of nearest neighbours, Potts interactions favour ferromagnetic 
alignment. In the high-temperature disordered phase all interactions are weak, but in the low- 
temperature disordered phase the interactions are strong-the absence of order in this case is 
due to the competing interactions effectively cancelling one another. Thus, correlations are 
strong when the system re-enters the disordered phase. In fact, the increased correlations 
between Potts variables serves to lower the entropy more than enough to offset the increase 
in entropy caused by the system re-entering the disordered phase, as discussed above. 

temperature range of the antiferromagnetic phase decreases. rn fact, for large enough K3/K 
the system never enters the antiferromagnetic phase at all, but remains disordered until all 
2q variables order at a still lower temperature. This is in accord with the previous qualitative 
discussion; namely, if the Potts interaction, K3, is increased enough it can overcome the 
entropy disadvantage associated with that interaction. As a result, the Potts interactions 

Finally, note that if K3/K  is increased-increasing the slope of the dashed line- the^ 
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out-compete the king interactions, and prevent long-range antiferromagnetic order from 
occurring. 

S M Wood and J S Walker 

5. Liquid crystal example 

We now apply our model for re-entrant systems to liquid crystals. In this example, we focus 
on molecular species with characteristic polar heads and hydrocarbon tails (Cladis 1975). 
Only temperature regions below the isotropic-nematic phase transition, in which molecules 
lie along a preferred axis, are considered. We assume that the liquid volume is made up 
of cubical molecular-sized cells, each containing an A or B molecule with a polar head 
pointing in the positive or negative direction (si = &I), respectively. The interpretation 
of the reduced energy level diagram of figure 1 is shown in figure 3. The Potts variables 
(q = 1,2,3, . . . , q )  now represent hydrocarbon tail configurations, rather than molecular 
orientation. For like-directed nearest neighbours, we assume that molecules with equal U- 

values have interlocking, and thus interacting tails, while those with different U-values have 
non-interacting tails. 

Figure 3. Liquid crystal molecular configurations corresponding lo the reduced energy ievei 
diagram of figure 1. In this m e .  A refen to an upward pointing molecule, B to a downward 
pointing molecule. The taii configurations ?.re represented by the Pot6 variables. 

The physical portion of the phase diagram in figure 2 is the first quadrant where K > 0 
and K3 > 0. That K is positive is clear from figure 3, since anti-alignment gives a favourable 
dipole interaction, and with this alignment tails do not interact. For K3 we assume that 
the tail interaction is strong enough to~overcome the dipole interaction, making the overall 
interaction favourable. For our liquid crystal model, phase I1 denotes a smectic A phase in 
which unlike-directed molecules are nearest neighbours, phase III is a nematic disordered 
phase,~and phase V is a smectic A1 phase in which like-directed molecules have interacting 
tails. 

As discussed in the previous section, we can assign a ratio R = Kz/K  in order to 
characterize a particular system. Figure 4 shows the phase diagram plotted as reduced 
temperature (T = 1/K) versus R. The dashed line represents an arbitrarily chosen system 
with R = 3.30. Qualitatively, the diagram correctly describes the behaviour of certain 
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liquid crystals, such as SOCB (Lushington et a1 1980). The system exists in a nematic 
phase (III) at high temperature, then exhibits a phase transition to the smectic A phase 01) 
as the temperature is lowered, followed by re-entrance into the nematic phase at still lower 
temperature, followed by a final transition into the smectic A1 phase (V). 

T 

3 

2 . 5 .  

I1 

2 .  

1.5. 
I 

I 
I 

R 
2.2 2.4 2 .6  2 .8  3 3.2 3.4 

1 

Figure 4. Phase diagnm plotted as reduced tempemhire (T = I / K )  versus R = K 3 / K .  The 
dashed line indicates the locus of initial conditions for an arbitrarily chosen value of R = 3.30. 
The numbering of the phases follows t h s  of figure 2. 

The number of possible tail configurations q can be changed to alter the shape of the 
phase diagram. Figure 5 shows how the antiferromagnetic phase boundary of figure 2 
becomes taller and steeper as q is increased from q = 500 (a) to q = 50000 (b). In 
the figure, Ti denotes the lower phase transition temperature, while Tu denotes the upper 
transition temperature. The dashed lines each correspond to the same value of q / T u  so that 
each intersected curve spans the same relative temperature interval. The resulting T versus 
R diagram shown in figure 6 reveals the modification in antiferromagnetic phase boundary 
shape when q increases from q = 500 (a) to q = 50000 (b). This diagram exemplifies 
how the symmetry of the phase boundary ‘knee’ can be adjusted to best model a particular 
system by increasing or decreasing the value of q accordingly. 

6. Summary 

The study presented here has focused on a previously unexplored subspace of the WV 
model. In this subspace we find several phase transitions of various types, including an 
antiferromagnetic king transition that exhibits =-entrance. The underlying mechanism of 
the antiferromagnetic re-entrance-competition between the energetically favourable Potts 
interactions and the entropically favourable king interactions-is basically the same as 
that responsible for the ferromagnetic re-entrance observed in binary liquid mixtures. We 
propose that the antiferromagnetic re-entrance reported here may play a role in the re-entrant 
nematic-smectic A-nematic-smectic A, phase transitions of certain liquid crystals. 
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Figure 5. Antiferromagnetic phase boundaries in (K3, K) space for two different values of q ;  
q = 500 (a) and q = 50 000 @). Note the increased sharpness of the phase boundary 'knee' as 
q is increased. TI and Tu denote the lower and upper phase hamition temperatures, respectively. 
The two dashed lines correspond to different loci of initial conditions for two different values 
of R: R = 3.30 (a) and R = 5.97 @). These values of R ensure that each line has the same 
ratio of lower and upper temperaturs, ZITn = 0.78. This allows phase boundary shapes to be 
compared, as in figure 6. 

Figure 6. Antiferromagnetic phase boundaries of figure 5 plotted as reduced temperature T 
yerms R. Note the increased sharpness and change in symmehy near the phase boundary apex 
as q is increased from q = 5CG(a) to q = 50000 (b). 
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Finally, our study has been carried out using a variation of the Migdal-Kadanoff 
position-space renormalization-group approximation. The transformation we derive here 
successfully preserves the important qualitative features of the model. Furthermore, the same 
transformation applied to binary liquid mixtures has proven to give quantitative agreement 
with experiment. 
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